AGRICULTURAL WASTES AVAILABILITY & MAPPING IN THE EU

Sotiris I. Patsios Chemical Engineer, PhD

Laboratory of Natural Resources and Renewable Energies (NRRE), Chemical Process and Energy Resources Institute (CPERI), Centre for Research and Technology Hellas (CERTH) P.O Box 60361 6th km Charilaou - Thermi Road Thermi - Thessaloniki, GR 57001

AGRICULTURAL WASTES CO- & BY-PRODUCTS

- Europe produces more than 1.300 Mton per year of solid wastes
- Half of this quantity (700 Mton) originates from agricultural sector¹
- Agricultural Wastes Co- & By-Products (AWCB) refer to the non-usable or of low-value product/streams of agricultural commodities (even more than 100%)

¹Pavwelczyk A. (2005). XIIth International Congress, ISAH, Warsaw, Poland.

STULK

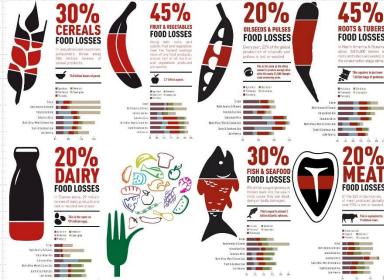
LEAVES

TASSEL

STALK & COB

AGRICULTURAL WASTES CO- & BY-PRODUCTS

- AWCB is a very wide term including many different kind of streams
- AWCBs are produced throughout the whole supply chain (production--> processing --> consumption)
- AWCBs may be solid (e.g. twings, straw etc.), sludgy (e.g. manure, wine lees etc.) or liquid (olive pomace, wastewaters etc.)
- Food waste can be considered part of AWCBs



- Much data are already available concerning the availability of agricultural or solid wastes in EU28
- Focus has been paid mainly on:
 - Food Waste (143 Mtons per year)

Much data are already available concerning the availability of agricultural or solid * wastes in EU28 oil or Industrial waste gases. Currently, around

WAST

RUBOPE'S UNTAPPED RESOURCE

n Assessment of Advanced Biofuels from Wastes @ Residues

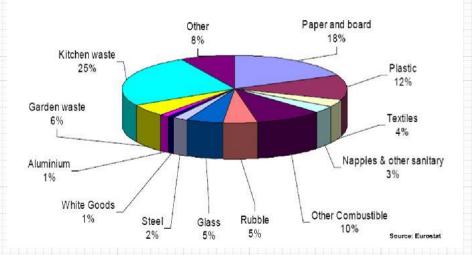
- Focus has been paid mainly on: *
 - Food Waste (143 Mtons per year) *
 - Solid Residues used for Bioenergy (139 + 40 Mtons per year)

Harmonization of biomass resource assessments

1.1 million tonnes of used cooking oil is being converted each year to low-carbon fuel in the EU notential to expand er more novel methods of producin

aced biofuek that utilize carboautch waster industry isuch as the steel industry) that peginning to scale to commercial levels. today, steel production in Europe sunts for 8 per cent of the EU's CO) emissions. uction of ethanol from European steel mill ues alone could amount to around one-third ie EU's Renewable Energy Directive target of er cent biofuels in transport by 2020 - around 8 in tonnes of oil equivalent (Mtoe) - according me estimates

44 million tunnes d Municipal Solid Waste


Agri-Food Waste Day Conference, 17th October 2017, Brussels, BELGIUM

EARCH & TECHNOLOGY HELLAS

- Much data are already available concerning the availability of agricultural or solid wastes in EU28
- Focus has been paid mainly on:
 - Food Waste (143 Mtons per year)
 - Solid Residues used for Bioenergy (139 + 40 Mtons per year)
 - Municipal Organic Wastes (44 or 75 Mtons per year)

& TECHNOLOGY HELLAS

Municipal Solid Waste composition EU 27

- Much data are already available concerning the availability of agricultural or solid wastes in EU28
- Focus has been paid mainly on:
 - Food Waste (140 Mtons per year)
 - Solid Residues used for Bioenergy (139 + 40 Mtons per year)
 - Municipal Organic Wastes (44 or 75 Mtons per year)
 - Cellulosic Waste Material (122 + 40 + 38 Mtons per year)

Category	Subcategory	Current availability (Mtonnes/yr)	2030 Availability (Mtonnes/yr)	
	Paper	17.5	12.3	
Waste	Wood	8	5.6	
	Food and garden	37.6	26.3	
Crop residues		122	139	
Forestry residues		40	40	
	Sum	225	223	

O WHITE PAPER

icct

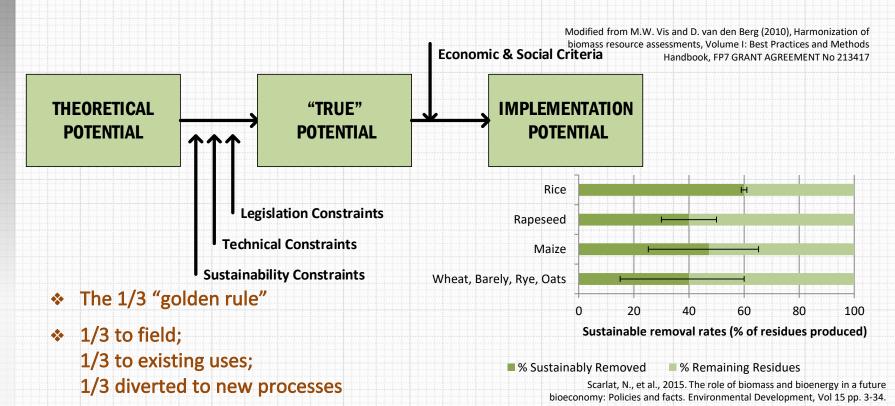
AVAILABILITY OF CELLULOSIC RESIDUES AND WASTES IN THE FU

Table 6. Calculation of total agricultural residue production in Europ

	Crop type	Crop production (Htonnes)	Field residue production ratio*	Proccessing residue production ratio	Total residue production (Mtonnes)
	Barley	55.2	0.94	0.24	65
	Malze	48.6	0.80	0.47	62
	Oats	8.0	107	0.24	10
	Olives	8.4	012		1
	Rapeseed	16.4	1.08		18
1	Rice	1.3	1.32	0.27	2
	Rye	8.0	113	0.24	п
	Soybeans	0.5	2.50	1.00	2
	Sunflower	5.2	1.77		9
1	Triticale	9.9	1.04	0.24	13
	Whoat	122.1	0.94	0.24	144
	Sugar beet	111.3	0.27		30
	Sum	394.9			367

WHAT CAN WE LEARN FROM AWCBs MAPPING?

- AWCBs location, quantity, availability and characteristics critical data for developing viable exploitation methodologies
- Seasonal production, Spatial distribution, different physicochemical properties, differences in the production and processing practices.
- AWCBs mapping is necessary to decide on the valorization methodology, technoeconomic viability, and "bio-refineries" or "valorization facilities" location.
- To prepare successful valorization policies.


WHAT CAN WE FURTHER DO?

- Develop/adopt a uniform methodology/terminology
- Significant quantities are produced during processing of commodities
- Limited data on liquid waste streams (wastewaters)
- No or little data on commodities with regional interest (e.g. peaches)
- Little data on country level

A COUPLE OF WORDS ON AVAILABILITY...

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

THE "AGROCYCLE" POINT OF VIEW

Waste-7-2015

Table 3.1a: Work package description

Work package number	1 Start date or starting event:						M1						
Work package title	Agricultural Waste Value Chain Assessment												
Participant number	1	2	3	4	5	6	7	8	9	10	11	12	
Short name of participant	UCD	UGENT	HAU	FRAU	CNR-IPCF	CERTH	SDEWES	DEMETER	CREA	NNFCC	CAU	NJ	
Person/months per participant													
Participant number	13	14	15	16	17	18	19	20	21	22	23	24	25
Short name of participant	IRIS	TOMSA	EXE	AXEB	AGRII	RESET	CG	M&S	EUBIA	RABDF	CEMA	CIBE	EF
Person/months per participant													

Objectives

· To map, characterise and quantify the available agricultural AWCB

In order to address this over-arching objective, this WP will undertake an integral analysis of the agricultural v including assessment of waste distribution, composition, relevance to current agricultural systems, value chain b current regulatory requirements. The WP team will:

- Map the AWCB value chains across Europe.
- Characterise the AWCBs in terms of energy, nutrient and water contents. -
- Quantify the AWCBs that can be removed without adversely affecting current agricultural production systems or environment
- Assess the logistics required for AWCB valorisation systems.
- Assess the current regulatory framework governing AWCBs.

Agri-Food v. 17th October 2017, Bruss

AGROCYCLE

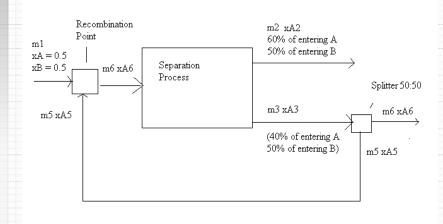
AGROCYCLE

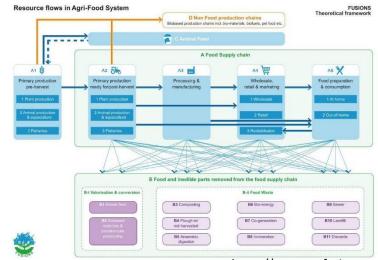
Report on EU regulatory frameworks

for AWCB management,

d potential health risks

AGROCYCLE

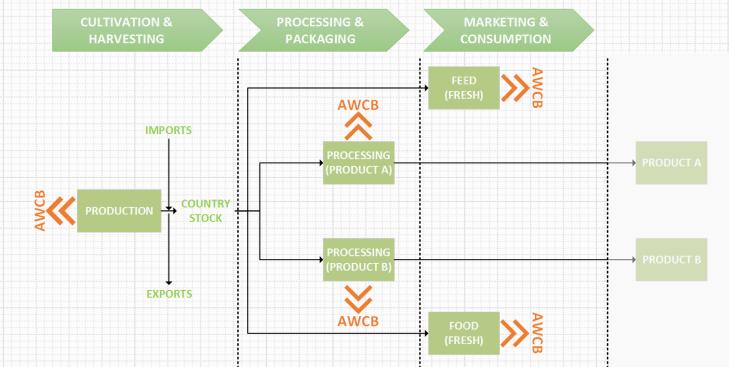

AGROCYCLE


Datab

AWCB

AWCBs MAPPING AS A CHEMICAL ENGINEERING PROBLEM...

 AWCBs quantification and mapping can be considered a classical mass balance problem (different time scale)



https://www.eu-fusions.org

METHODOLOGICAL APPROACH

METHODOLOGICAL APPROACH

I. System boundaries

- Waste streams directly related to agricultural commodities
- No processed foods
- Time frame: yearly production
- II. Main assumptions
 - Spatial distribution on country level
 - Non-processed agricultural commodities are consumed within the year of production
 - No differences in properties of commodities throughout Europe

METHODOLOGICAL APPROACH

III. Data sources

- EUROSTAT (http://ec.europa.eu/eurostat/data/database)
- FAOSTAT (http://www.fao.org/faostat/en/#data)
- International Trade Center (http://www.intracen.org/itc/market-info-tools/tradestatistics/)
- Farmer and food associations
- ✤ Literature

MAIN AGRICULTURAL COMMODITIES

Table 2.1: Top 10 agricultural commodities in the EU28 countries in terms of quantities

COUNTRY					сомм	ODITIES				
Austria	Sugar beet	Milk cow	Maize	Wheat	Barley	Potatoes	Pigs	Apples	Grapes	D.a
Belgium	Sugar beet	Milk cow	Potatoes	Wheat	Pigs	Chicken	Carrots	Turnips	Pears	Chicory
Bulgaria	Wheat	Maize	Sunflower	Milk cow	Barley	Rapeseed	Grapes	Potatoes	Tomatoes	Chicker
Croatia	Maize	Sugar beet	Wheat	Milk cow	Barley	Grapes	Potatoes	Sunflower seed	Apples	Soybean
Cyprus	Milk cow	Potatoes	Pigs	Tangerines	Oranges	Milk goat	Grapes	Chicken	Milk sheep	Grapefrui
Czech Republic	Wheat	Sugar beet	Milk cow	Barley	Rapeseed	Maize	Potatoes	Chicken	Triticale	Pig
Denmark	Milk cow	Wheat	Barley	Sugar beet	Pigs	Potatoes	Rapeseed	Rye	Chicken	Cattle
Estonia	Milk cow	Barley	Wheat	Rapeseed	Potatoes	Oats	Pigs	Peas	Cabbages	Rye
Finland	Milk cow	Barley	Oats	Wheat	Potatoes	Sugar beet	Pigs	Chicken	Cattle	Rapesee
France	Wheat	Sugar beet	Milk cow	Maize	Barley	Potatoes	Grapes	Rapeseed	Pigs	Tritical
Germany	Milk cow	Wheat	Sugar beet	Barley	Potatoes	Rapeseed	Rye	Pigs	Maize	Tritical
Greece	Maize	Olives	Wheat	Tomatoes	Grapes	Potatoes	Oranges	Milk cow	Milk sheep	Peache
Hungary	Maize	Wheat	Milk cow	Sunflower	Barley	Sugar beet	Apples	Maize green	Rapeseed	Grape
Ireland	Milk cow	Barley	Cattle	Wheat	Potatoes	Pigs	Oats	Chicken	Mushrooms	Cabbage
Italy	Milk cow	Grapes	Maize	Wheat	Tomatoes	Olives	Apples	Sugar beet	Oranges	ם.ם
Latvia	Wheat	Milk cow	Rapeseed	Barley	Potatoes	Oats	Rye	Cabbages	Pigs	ם.ם
Lithuania	Wheat	Milk cow	Sugar beet	Barley	Rapeseed	Triticale	Potatoes	Oats	Pigs	Ry
Luxembourg	Milk cow	Wheat	Barley	Triticale	Potatoes	Rapeseed	Cattle	Grapes	Pigs	Oat
Malta	Milk cow	Wheat	Potatoes	Tomatoes	Onions	Cauliflowers	Broccoli	Pigs	Lettuce	Chicor
Netherlands	Milk cow	Potatoes	Sugar beet	Pigs	Onions	Chicken	Tomatoes	Carrots	Turnips	Cucumber
Poland	Milk cow	Sugar beet	Wheat	Potatoes	Triticale	Maize	Rye	Apples	Barley	D.a
Portugal	Milk cow	Tomatoes	Grapes	Olives	Potatoes	Chicken	Apples	Pigs	Oranges	<u>n.a</u>
Romania	Maize	Wheat	Milk cow	Potatoes	Sunflower	Barley	Cabbages	Sugar beet	Grapes	Tomatoe
Slovakia	Wheat	Sugar beet	Maize	Milk cow	Barley	Rapeseed	Sunflower	Potatoes	Rye	ق.0
Slovenia	Milk cow	Maize	Wheat	Apples	Barley	Grapes	Potatoes	Chicken	Cattle	Pig
Spain	Olives	Wheat	Grapes	Milk cow	Tomatoes	Pigs	Oranges	Sugar beet	Potatoes	Tangerine
Sweden	Milk cow	Sugar beet	Barley	Wheat	Oats	Potatoes	Rapeseed	Pigs	Rye	D.a
United	Milk cow	Wheat	Sugar beet	Barley	Potatoes	Rapeseed	Chicken	Oats	Cattle	Pig

MAIN AGRICULTURAL COMMODITIES

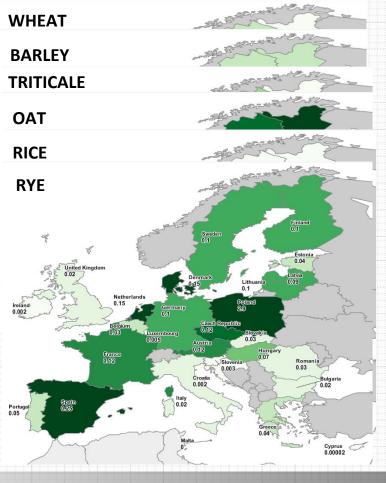
Ranking of agricultural commodities (1-10)

Summing up their ranking in EU28 level

Sorting

Adding some of specific interest (peaches, rice)

RANKING	COMMODITY
1	Milk cow
2	Wheat
3	Potatoes
4	Barley
5	Sugar beet
6	Maize
7	Pigs
8	Grapes
9	Tomatoes
10	Chicken
11	Oats
12	Olives
13	Sunflower seed
14	Apples
15	Triticale
16	Rye
17	Cattle
18	Oranges
19	Onions
20	Cabbages
21	Tangerines
22	Carrots
23	Cauliflowers
24	Rapeseed
25	Peaches
26	Rice


INDICATIVE RESULTS

Average Straw production in EU28 between 2010-2014

RANKING	COMMODITY	STRAW (Mtons/y)	
1	Wheat	77.0	
2	Barley	57.0	
3	Triticale	30.8	
4	Oat	11.8	
5	Rice	3.95	
6	Rye	3.04	
		183.6	

- Available data on year base; e.g. min & max during 2010-2014
- Variation of data (risk analysis); e.g. SD is from 3% (GR) to 51% (CY) for wheat, from 4% (ES) to 14% (RO) for rice, and from 7% (FR) to 54% (ES) for triticale

INDICATIVE RESULTS

- Interesting results concerning fruit commodities
- Solid AWCB are produced during cultivation (e.g. twings) and consumption (e.g. rotten peaches, kernels)
- Sludgy/liquid AWCB are produced during processing (peach pulp, wastewater)
- Liquid AWCBs are significantly more (7.6 Mtons/y) compared to solid AWCBs (3.1 Mtons/y)

CONCLUSIONS FROM AWCBs MAPPING

- Significant quantities of AWCBs are produced throughout the EU28, exhibiting serious valorization potential
- Solid AWCBs mainly occur during the cultivation and consumption stage
- Sludgy/liquid AWCBs are produced almost exclusively (apart from manures) during commodities processing

CONCLUSIONS FROM AWCBs MAPPING

- Temporal variations can be considered low to moderate due to changes in the cultivated areas and the annual yields;
- Spatial differences between north and south EU28 countries (e.g. fruit AWCBs mainly in south Europe)
- Comparably lower quantities of solid AWCBs produced during the processing stage; nevertheless high spatial concentration compared to cultivation/harvesting stage

RECOMMENDATIONS

 Selection of specific agricultural commodities and generation of data on a smaller spatial scale; especially for production stage

Focus on AWCBs from processing stage; found in specific sites with high availability

 Quantification and mapping of AWCBs requisite for development of economic viable exploitation strategies

THANK YOU FOR YOUR ATTENTION

My deepest gratitude to all people and colleagues involved in WP1 of «AGROCYCLE - Sustainable technoeconomic solutions for the agricultural value chain», Project ID: 690142. Special acknowledgements to Dr. Boris Cosic (SDEWES) for its contribution.

