

Converting Agricultural Waste into Sustainable and Value-added Products for Efficient Material and Chemical (Succinic Acid) Production

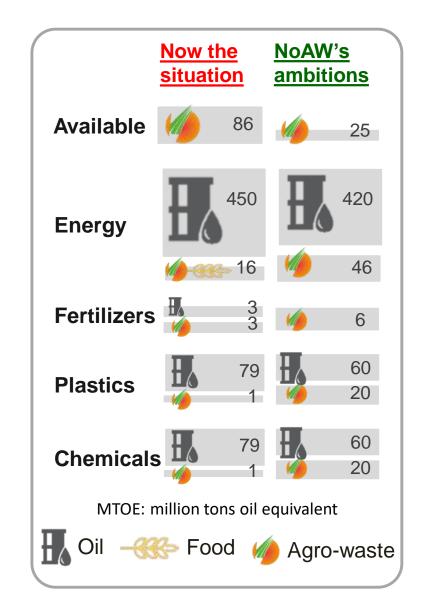
Hélène Angellier-Coussy, University of Montpellier, France Carol Sze Ki LIN, City University of Hong Kong

Agricultural waste and residue management for a circular bio-economy: Shared EU and China impact-oriented solutions Section A2. Challenges and Perspectives of Up-Cycling Agricultural Wastes and Residues into Sustainable Bio-Products using Eco-Friendly Technologies

October 22, 2018 at 17:30 - Hubei Hotel, Haidian District, Zhongguan South Street, No. 36, Beijing, China

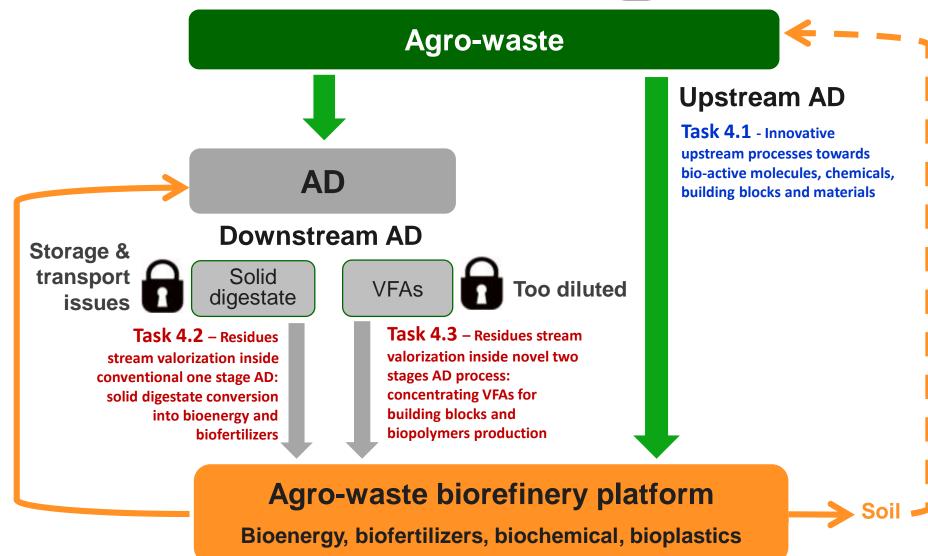
Overview

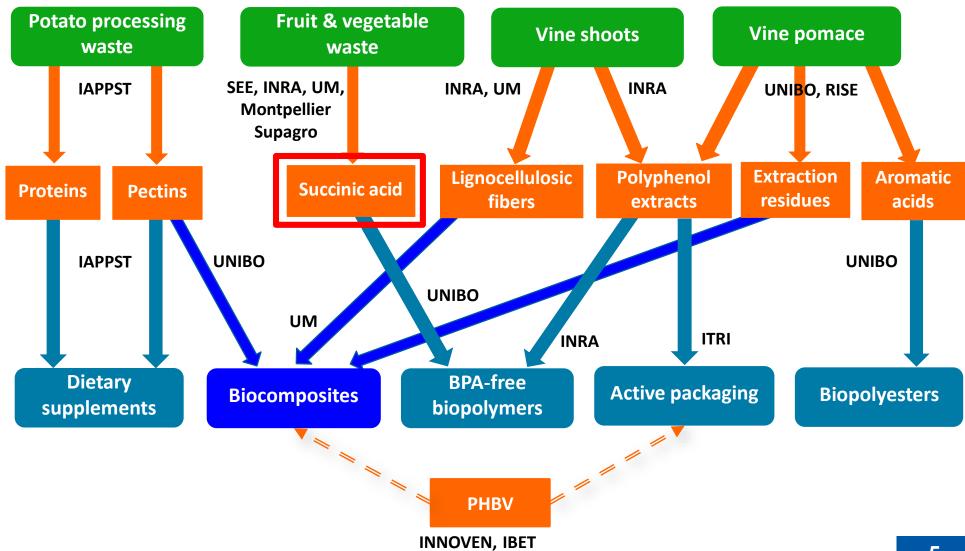
- Introduction of NOAW's WP4 rationale and objectives
- Development of agro-waste bio-refinery concepts : two examples
 - Lignocellulosic-based biocomposites for food packaging
 - Succinic acid production using metabolic evolutionary
- Conclusions and acknowledgements

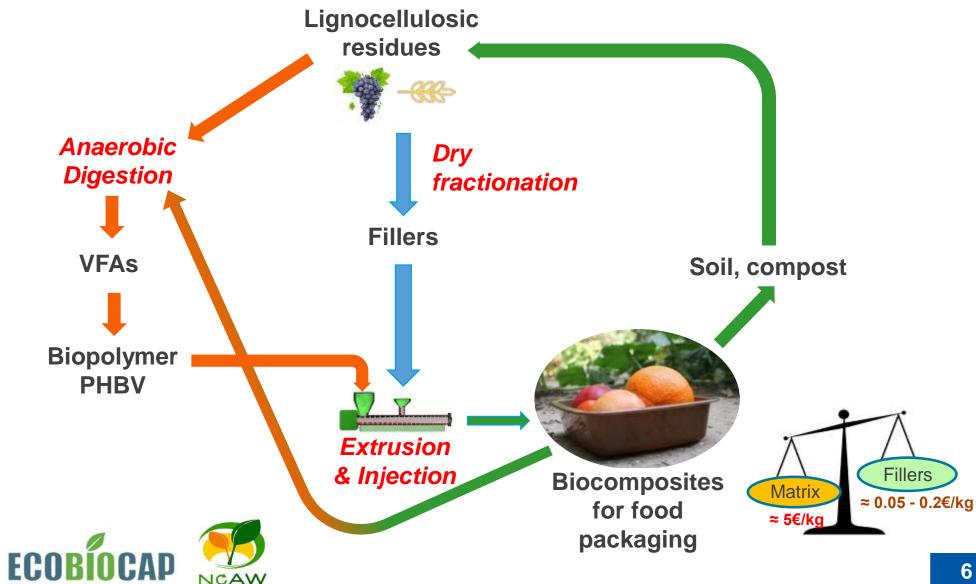

NOAW and WP4 context

Towards real recyclability by developing a circular economy approach applicable to agro-wastes on a territorial and seasonal basis, by developing added-value bioproducts without penalising sideeffects on soils, water and air quality

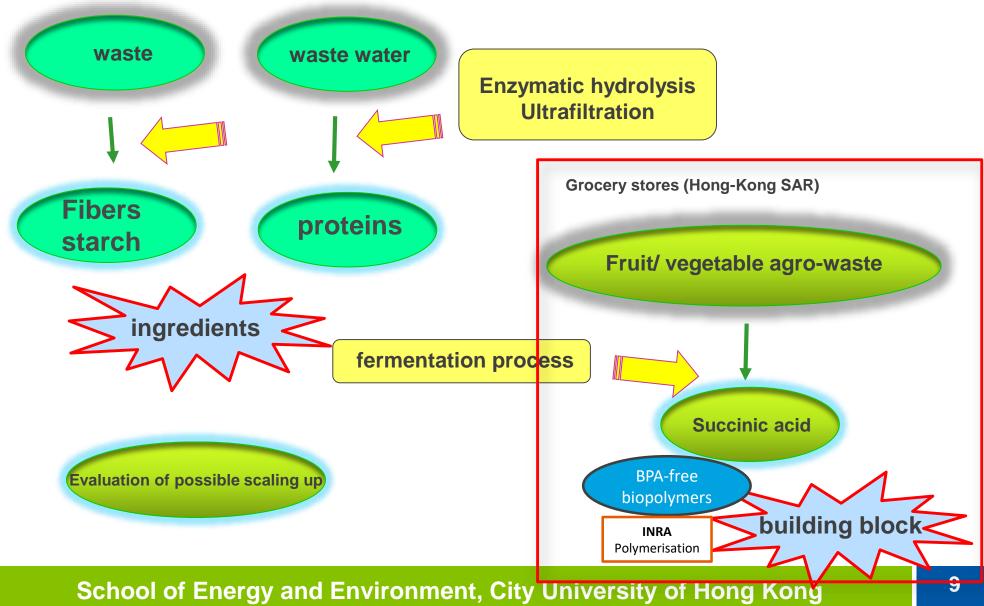
NOAW and WP4 objectives


- To up-cycle more than 75% of agro-waste
- into bioenergy, biofertilizers, biochemicals and biodegradable innocuous bioplastics,
 - to substitute non-food crops uses
 - ♦ to contribute to oil resources saving
 - ♦ to increase renewable energy
 - to eradicate food packaging plastics accumulation
 - ♦ to ensure nutrients back to the soil
 - to reduce the negative impact of inappropriate agro-waste management
- using eco-efficient technologies to limit carbon emission.

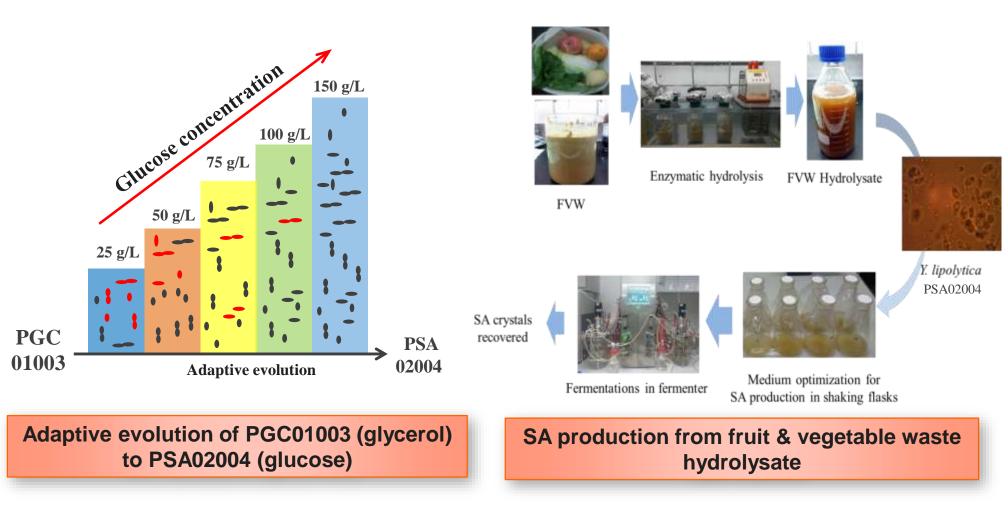

NOAW and WP4 objectives


Complexity, variability, contaminants

Task 4.1. Different value chains according to the initial biomass (upstream AD)

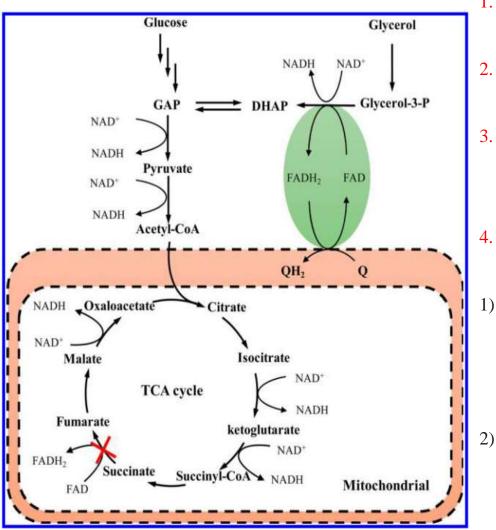


Example 1 : PHBV/lignocellulosic fibers biocomposites for food packaging



Example 2 : Succinic acid production using agricultural waste

Potato starch processing (Mainland of China)



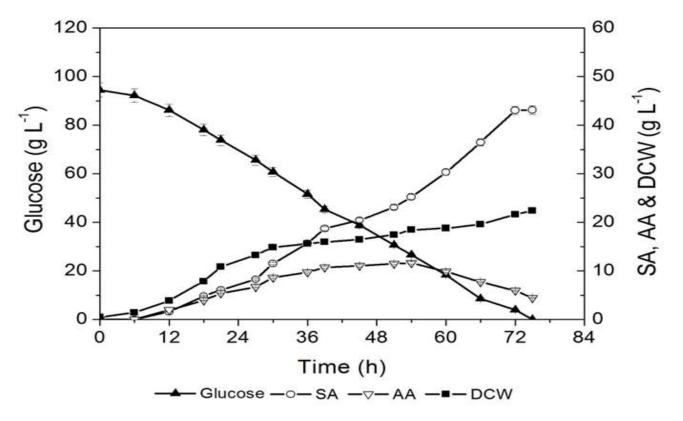
SA production using fruit and vegetable waste as substrate

Publication: Yang, X., Wang, H., Li, C., **Lin, C.S.K.** 2017. Restoring of glucose metabolism of an engineered *Yarrowia lipolytica* for succinic acid production *via* a simple and efficient adaptive evolution strategy. *Journal of Agricultural and Food Chemistry*, 65, 4133-4139.

PSA02004

- Parent strain of PSA02004: PGC01003
- 2. Substrate: glucose at pH 6.0.
- Pathway: the same to PGC01003, but the pathway from glucose might be activated.
- . Related papers:
- Yang, X., Wang, H., Li, C., Lin, C.S.K. 2017. Restoring of Glucose Metabolism of Engineered *Yarrowia lipolytica* for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy. J Agric Food Chem, 65(20), 4133-4139.
- Li, C., Yang, X., Gao, S., Chuh, A.H., Lin, C.S.K. 2018.
 Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered *Yarrowia lipolytica*. Journal of Cleaner Production(179), 151-159.

Glucose production using fruit and vegetable as substrate

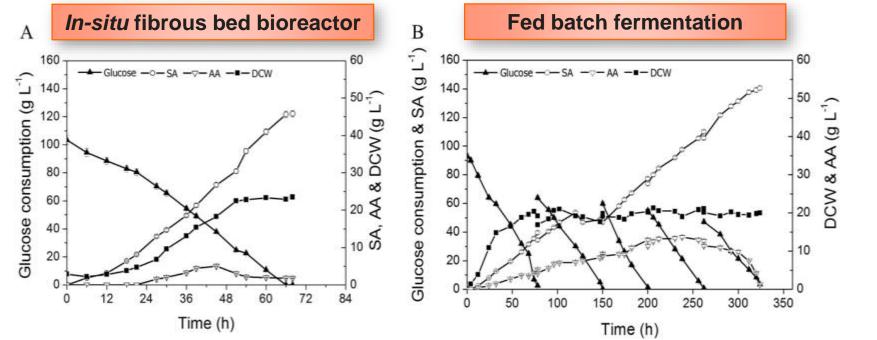

Enzyme Optimized	Dosage of other enzymes	Dosage (%, w/w FVW)	Initial glucose (g L ⁻¹)	Glucose produced (g L ⁻¹)	Yield (g g ⁻¹)
Glucoamylase		0.25	10.3 ± 0.3	36.6±0.4	0.38 ± 0.01
	Cellulase (1%) Hemicellulase (0.5%) Pectinase (0.5%)	0.5	10.0 ± 0.3	39.5 ± 0.5	0.41 ± 0.01
		1.0	9.9 ± 0.4	41.0 ± 0.5	0.42 ± 0.01
		2.0	10.9 ± 0.5	43.8 ± 0.2	0.45 ± 0.01
		3.0	11.6 ± 0.5	43.9 ± 0.2	0.45 ± 0.01
		4.0	12.5 ± 0.5	43.3 ± 0.5	0.44 ± 0.01
	Glucoamylase (2%) Hemicellulase (0.5%) Pectinase (0.5%)				
		0.25	12.1 ± 0.5	36.1 ± 0.5	0.37 ± 0.01
Cellulase		0.5	12.1 ± 0.5	35.5 ± 0.5	0.37 ± 0.01
		1.0	12.8 ± 0.5	43.1 ± 0.5	0.45 ± 0.01
		2.0	11.7 ± 0.5	42.8 ± 0.5	0.44 ± 0.01
		3.0	11.1 ± 0.5	43.2 ± 0.5	0.45 ± 0.01
		4.0	13.1 ± 0.5	42.8 ± 0.5	0.44 ± 0.01
	Glucoamylase (2%)	0.25	12.4 ± 0.4	36.9 ± 0.5	0.38 ± 0.01
		0.5	12.5 ± 0.5	42.4 ± 0.5	0.44 ± 0.01
Hemicellulase	Cellulase (1%)	1.0	12.2 ± 0.2	41.7 ± 0.5	0.43 ± 0.01
	Pectinase (0.5%)	2.0	12.4 ± 0.4	44.3 ± 0.5	0.46 ± 0.01
		3.0	12.3 ± 0.3	44.2 ± 0.5	0.46 ± 0.01

Glucose production from enzymatic hydrolysis with various dosages of enzyme

• Glucose (44.3 g/L) was produced from FVW under the optimized conditions.

2% glucoamylase, 1% cellulase, 2% hemi-cellulase and 0.25% pectinase at pH 5.0 and 55 °C

SA production using fruit and vegetable waste as substrate



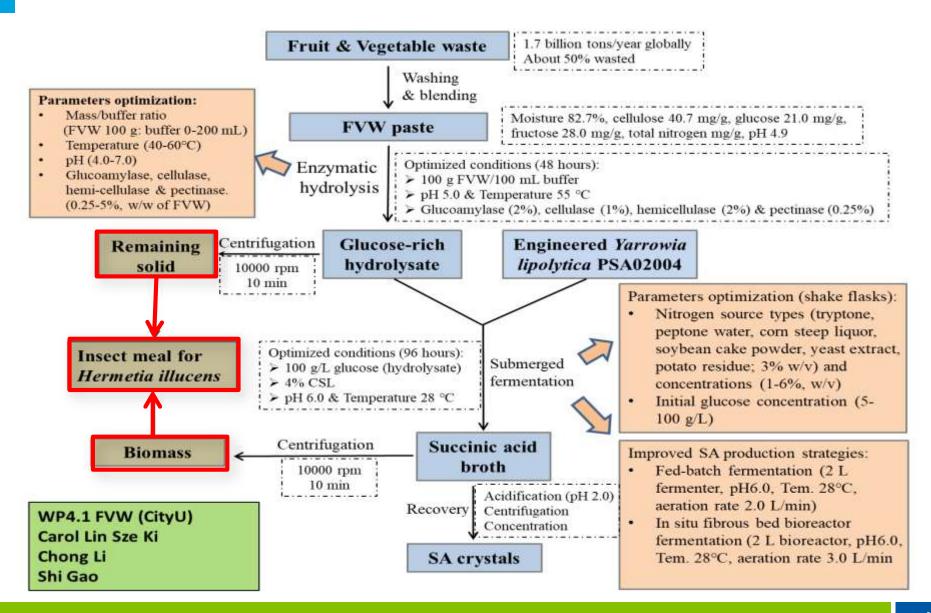
SA production under the optimized medium

SA titer at 43.1 g/L with a yield at 0.45 g/g was achieved from FVW hydrolysate.

Publication: Li, C., Yang, X., Gao, S., Lin, C.S.K. 2018. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered *Yarrowia lipolytica. Journal of Cleaner Production*, 179, 151-159.

Fermentation strategies for improved SA production

Table 6 Summary of SA production by different fermentation modes.


Fermentation modes	Time (h)	SA titer (g L ⁻¹)	SA productivity (g L^{-1} h^{-1})	SA yield $(g g^{-1})$	DCW (g L ⁻¹)	Biomass holdup (g) ^a
Batch isFBB	75 ± 1 66 ± 1	43.1 ± 1.0 45.6 ± 1.0	0.57 ± 0.02 0.69 ± 0.02	0.46 ± 0.01 0.46 ± 0.01	22.4 ± 2.0 23.3 ± 2.0	N/A ^b 9.5 ± 1.0
Fed batch	324 ± 1	43.0 ± 1.0 140.6 ± 2.0	0.03 ± 0.02 0.44 ± 0.01	0.40 ± 0.01 0.47 ± 0.01	23.3 ± 2.0 20.4 ± 3.0	9.5 ± 1.0 N/A

^a Biomass hold up refers to the cells immobilized to the cotton towel in *is*FBB.

^b Not applicable.

Li, C., Yang, X., Gao, S., Chuh, A.H., Lin, C.S.K. 2018. Hydrolysis of fruit and vegetable waste for efficient succinic acid production with engineered *Yarrowia lipolytica*. Journal of Cleaner Production, **179**, **151-159**.

Fruit & vegetable waste into valuable chemicals

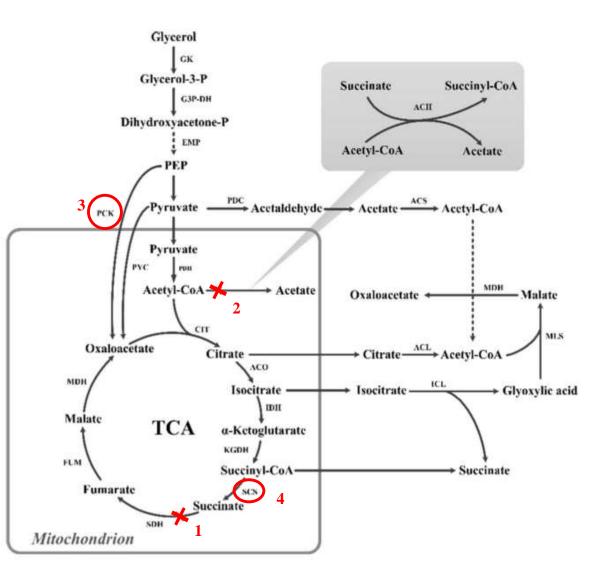
SA production at low pH

Why low pH?

 Acidification of succinate from fermentation broth (pH 6.0) to recover succinic acid crystals (pH 2.0) takes 60-70% of the total production cost [1-2].

Why Y. lipolytica?

- Bacteria considered as feasible succinate producers are unable to grow effectively at low pH values [1-4].
- SA production from glycerol by *Y. lipolytica* PGC202 has been demonstrated by our collaborator [4].


^{1.} Cok, B., Tsiropoulos, I., Roes, A.L., Patel, M.K. 2014.. Biofuels, Bioproducts and Biorefining, 8(1), 16-29.

^{2.} Zeikus, J.G., Jain, M.K., Elankovan, P., 1999. Applied Microbiology and Biotechnology. 51, 545-552.

^{3.} Andersson, C., Helmerius, J., Hodge, D., Berglund, K.A., Rova, U., 2009. Biotechnology Progress. 25, 116-123.

^{4.} Cui, Z., Gao, C., Li, J., Hou, J., Lin, C.S.K., Qi, Q. 2017. Metabolic Engineering, 42, 126-133.

PGC202

Parent strain: should be modified from PGC01003.

Substrate: Glycerol at pH without control (pH 2-3)

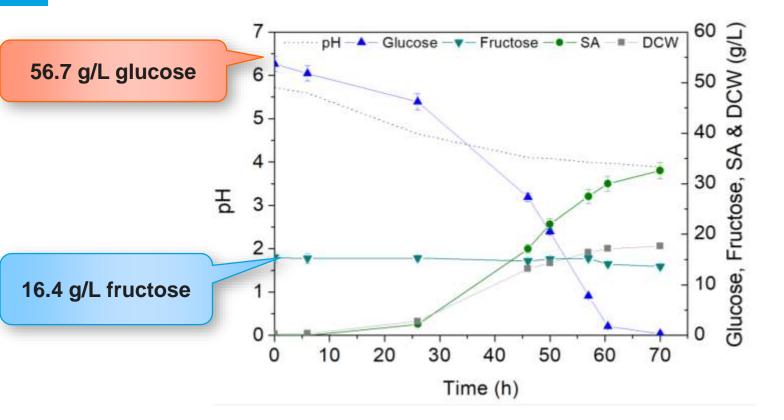
Pathway:

1. Inactivation of succinate dehydrogenase

(SDH): produce high SA at pH 6.0 but more acetic acid. **Polfe (PGC01003).** Acetic acid may negatively influence cell growth and SA production, which might be the reason that *Y. lipolytica* can not produce SA at low pH.

2. Deleting YIACH (acetyl-CoA hydrolase): AA decreased from 7.5 g/L to 0.2 g/L. SA production and cell growth were improved (27.3% in SA titer). But too much pyruvate accumulation (0.4-6.0 g/L).

3. Overexpression of ScPCK (phosphoenolpyruvate carboxykinase from *Saccharomyces cerevisiae*): eliminating the accumulation of pyruvate, and increased SA production by 150.2%.


4. Further improve SA production by overexpressing YISCS (succinyl-CoA synthase):24% higher in SA titer than Step 3.

Related Paper:

Cui, Z., Gao, C., Li, J., Hou, J., Lin, C.S.K., Qi, Q. 2017. Engineering of unconventional yeast *Yarrowia lipolytica* for efficient succinic acid production from glycerol at low pH. Metab Eng, 42, 126-133.

School of Energy and Environment, City Uni

SA production from fruit & vegetable waste by PGC202

- Fermentative SA production was performed without pH control by *Y. lipolytica* PGC202.
 (pH decreased from 5.7 to 3.9)
- 32.6 g/L SA with a yield of 0.61 g/g was produced from FVW hydrolysate.
- DCW was 17.6 g/L
- Fructose kept stable at around 15 g/L before the depletion of glucose.
 School of Energy and Environment, City University of Hong Kong

Summary of research work

N	ovelties	C	onclusions
	Feasibility of using fruit and	•	SA titer at 43.1 g/L was obtained from
	vegetable waste hydrolysate for		fermentation of fruit and vegetable hydrolysate.
	SA production by Y. lipolytica	•	Acetate was found to be the reason for the
	was demonstrated.		inhibition of <i>Y. lipolytica</i> at low pH.
		•	Y. lipolytica has extensive substrate
	Application of metabolic		adaptability.
	ngineering to obtain Y.	•	Highest SA yield of 0.61 g/g was achieved
	<i>lipolytica</i> for bio-synthesis of SA		using fruit and vegetable waste hydrolysate
	from glucose at low pH was		by PGC202 in <i>in-situ</i> FBB without pH control
	demonstrated.		by i GC202 in m-suu i DD without pii control

Acknowledgements

Funding Body: RGC [Project No. PJ#9042001] and City U [Project No.7004466]

European Commission (Horizon 2020)

Group members: Dr. Chong Li, Mr. S. Gao, Dr. X.F., Yang, Mr. H.M., Wang, Mr. Khai Lun Ong, Ms. Xiaotong Li, Mr. Harmony Chuh

Collaborators: Prof. Qingsheng Qi & Dr. Cuijuan Gao from Shandong University (Y. lipolytica)

Thank you!